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1 Introduction

According to the functional view of data, the content of aathaise instance can be described
as a collection of sets and functions in that (i) for eachteityipe a there is defined in the
database instance a 48t of entities of typea; (ii) for each, possibly optional, many-one

relationshipaar— b there is defined a possibly partial functién: E; — Ep. In this view, an
instance of such a relationshigs defined to be a pair of entitiese’ such thatf,(e) = €.
Without loss of generality there can be assumed a singl¥¢ sétall values that potentially
might be held in columns of tables, such as all possible textserics, booleans and so on,
so that for each attributtr of entity typeet there is defined in the database instance a func-
tion fanr tEq - V.

In relational data modelling, each row of data is uniquestidguishable from the values of a
specific set of columns said to comprise the primary key taltita whereas in logical entity
relationship (ER) modelling each entity is distinguisteatstbm the values of a specific set of
attributes taken in combination with a specific set of relaghips with other entitiés

From this starting position we provide a set of general diédims of ER schema, ER schema
instance, andER model so that from the definition odER model we capture the notion of a
database schema and all its envisaged usages (to a metanmatittian the ER schema notion
equates to aheory of some kind and an ER model to a theory and all its instaneesalil
its model€). We define the conditions for an ER model to be putebical in the sense
used in the ternhogical data design and, in contrast, the conditions for an ER model to be
physical. The definitions are such thatphysical ER model is pretty much the same thing
as a relational database schema. We define the first-cut Chppimg for generating a first
cut physical ER model from a logical ER model and then devéhip definition in a way
that reduces redundancy in the generated physical modelKirygt account of commuting
and near commuting diagrams of relationships in the logicatlel and thereby establish

LWhichever methodology is followed the goal is to achieve far database instances the logical principal of
identity of indiscernibles.

2This is my first and last usage of the temodel with the meaning the term has in mathematical logic; for the
remainder of this paper it will have the meaning as used in datieltiag.



a revised Chen mappind’ so that for any logical ER mode\1, X (M) is a physical ER
model. Finally we define what it is for a logical model to be Wefrmulated and prove that
if M is a well-formulated logical ER model then the generatedsaf ER modelt' (M) is
in Boyce-Codd normal form (BCNF).

2 Definition of ER model

The functional view of data summarised above taken with goglirement of specifying the
attributes and relationships from which entitites may kentified suggests a mathematical
definition of an ER-schema as follows:

Definition An ER-schema is a directed graph having the following additional struetu

(i) adistinguished nodefor which there are no outgoing edges and which represeats th
type of all scalar values

(i) adistinguished subset of edges representing identfgdges.

If M is an ER-schema (or an ER-model which, as we define belowdeslan ER-schema)
then the nodes oM other tharv we say are entity types and we denote/bt, the set of
edges leaving entity typa

The setM4 of attributes of an entity typais defined as the set of edges that haws source
andv as destination. The sg#] of outgoing relationships of an entity types defined as
the set of edges havirgas source and having destinations other thaiherefore for all
entity typesa:

ME = MEU MR

That subset of outgoing relationshipsadthat are also in the distinguished set of identifying
edges is said be the set of identifying relationshipa and is denoted iR,

That subset of those attributesathat are also in the distinguished set of identifying edges
is said to be the set of identifying attributesaoéind is denoted1 4.

The set of all outgoing identifying edges from a nadeill be denotedk,.

So that we can define the characteristicg pas a set of identifying properties for entitites of
typea we need the following definition:

Definition If sis a set and iffj 1<j<n is @ family of partial functionsf; : s— s for some
setss 1<i<n, then we will say that the family of function§ 1<i<n, is jointly invertible if
the partial function(fy,...fn) : s— 51 x ... x &, is invertible i.e. iff there is a partial func-
tioninvs, g,y :S1% ... xS = ssuch that (i) for ale s, inviy, .y ((f1(%),...f2(x))) =x and
(i) if yesyx...xsyandy ¢ img((f,...fa)) theninviy, 1y (y) is undefined.

which we then use to define the notion of a database instarfodass:

Definition A database instance of an ER schema is a set of entitiesfor each noda of the
graph of the schema and a partial functien E; — Ey, for each edge of the grapha—b
such that for each entity typethe family of functionfr’reMiaE, is jointly invertible.



It follows that in every database instarigefor every entity typea there is a functionvg,
that represents navigation to an entity from an identifigegof related entities or attributes.
In a physical model this will equate to keyed lookup.

Without change to the underlying concept then we can sayeahalh ER schema comes
equipped with a multi-edgk, for every entity type a such that if the outgoing identifying
edges ofa arek; : a— &, for 1<i < nthen the multi-edge has source nodes ...a,) and
destination node. ] . )

A simple navigation path over an ER model is a sequencesafges:et al—etl 52 ety... >
. g is said to be the source of the path atylis said to be the destination of the path.
We extend this definition to take account of navigation aldmgmulti-edges. To do so we
define the set of navigation paths recursively:

(i) Each edgef : a— bis a navigation path.
(i) The empty sequencg : a— ais a navigation path for every entity tyjpe

(iii) (p,f):a— cis a navigation path ip is a navigation patlp:a— b and fis an edge
p:b->c

(iv) (p1,-.-pn,Ip) : @a— b is a navigation path for all entity typéssuch thatl, : (b, ...bn)
and where for each 1<i<n, p; is a pathp;:a— by;.

For any database instanBewe can extend the definition &, for edgesf, so that to every
pathp, p:a— b, we have defined a functidf, : E -~ E,. From the initial definition of¢
that applies to edges the definition proceeds recursiveigiiasvs:

(i) Foreach entity typ@, E() : Ea > Ea is defined to be the identity function.

(ii) if pisa navi_gation patrp:g_—> bandf is an edgep: b~ cthenkE, y) is is defined to
be the functional compositioBp o Es.

(iii) for all entity typesb such thaty,: (bs,...b,) > b and where for each 1<i<n, pjis a
path,p; :a— bi, Ep, .1,y IS defined to béEp1,...Ep,) invEKb.

If r ands are paths both having soureeand destinatio then we will sayr < siiff in all
instances E, for all entitiese E,, if E; () is defined theis(e) is defined andk; (e) = Es(e).

If r ands are paths both having sourae@and destinatiot then we will sayr ~ siff r < sand
s<r.

With these definitions, the (meta-relationship} a partial order on the classes of equivalent
paths.

For paths andswe definer < sto be equivalent to < sand notr ~s.
Definition An ERmodel is an ER schema and a set of database instances of the schema.

If pis a path within an ER modeW1 then say that the path explicitly represented wrt the
model iff it is equivalent to a simple path.

We generalise the relational data model concept of a catadieey as follows:



Definition A family of pathsp; : a— & within a modelM is said to bgointly monomor phic
iff in all instances E, the family of functiorSy, 1<i<n is jointly invertible.

Consider that the various database normal forms (3NF, B@NF, 5NF and the like) each
prescribe that a database schema be complete in some wayeasrigpton of the facts of
its instanced and observe in particular that BCNF can be paraphrased amysimat those
relationships (i.e. functional dependencies) that exighée data ought to bespresented in
the schema. These considerations motivate the definititvishwiow follow and conclude
with the definition of awell-formulated entity model. This definition generalises that of a
relational schema being in Boyce-Codd Normal Form (BCNF).
Notation If Xi,...X, are sets and i = {iy,...ij} ¢ {1,...n} then denote by, the projection
function :

Py Xy x Xox .. Xn = X, x X, ><...X|'j

i.e. the function given by:
Py({X1, .- %)) = (Xig, i)

Definition If M is an entity model, ibs,...by andc are entity types of modeM and if fg
is a family of functions such that in every instare®f M:

fE:Eblx---XEbn_’Ec
then

« the family of functionsfg is said to beeducible to a family of functions:
Oe: Ebil X ... X Ebij - E¢
for someJ = {iy,...ij} € {1,...n}, iff in all instances E:
fe=Pyoge

« the family of functionsfg is said to berreducible iff there is no proper subset=
{i1,...ij} ¢ {1,...n}, and no family of functiongk : Ebil7"’Ebij — E¢ such thatfg is
reducible toge.

Definition A tuple of simple pathgps,...pn) is said to be andentifying tuple with respect
to an entity type a iff it is in the set of tuples defined recursively as follows:

(i) the empty tuplg) is an identifying tuple with respect &

(i) if k, L<i<nis the set of all identifying outgoing edges @then((ki),...(ky)) is an
identifying tuple with respect te,

(iii) if (p1,..-pn) is an identifying tuple with respect @ and if for somel, 1<i <n, the
destination ofp; is b and ifkj, 1< j <mis the set of all identifying outgoing edgesiof
then(pa,...pi—1, {pi, k1)...(pi, Km), Pi+1, .- Pn) is @an identifying tuple with respect @

Definition If M is an entity model, ifa andb are entity types of\ and if (gs,...qn) is an
identifying tuple with respect tb where for each, g : b— by, if fi:a— by, foreach, 1<i<n,
is a tuple of edges oM then say thaffs,...f,) references b with respect to (q,...qn) iff in

all instances of M, img(Ey, . 1,)) SIMI(E(q,...qn))-

3Essentially because being good as a schema is to be a gooy #meba good theory is one that is a good fit to
the facts.



Definition If M is an entity model and if;,...b, andc are entity types withinM and if fg
is a family of functions such that for each instaiieef M, fg : By, x ... x By, = Ec, then the
family of functionsfg is represented in the ER model iff either

(i) the family fg is irreducible and there exists an entity typpand an identifying tuple of
simple paths with respect t (g1, ...qn}), such that for each; : d — b; and a a simple
pathz=(z,...z) such thatz: d - c, for somel >0 as here:

by
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b, o
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Ve
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wherez; not identifying and such that in all instandesi Ve, o °E(zi,..2) = fe
Ep,
Ep ,
. ’ |nvE<qlqu)
fe bn
B B

or

(i) the family fg is reducible to an irreducible familye and the familyge is represented
in the model.

Remark For any entity modeM and for any typé of M the family of identity functions
on entities of typé :
idEb : Eb - Eb
is represented because we can choose dpdih- b and andz: b — b to be the empty patt);
then we have:
IVE G, . © Bl = 1VE © By

. _1 .
= |dEb oidg,
=idg,
as required.

Remark For any entity modelM, for anyn > 1, for any tuple of typeb;,...b, and for any,
1<i<n,ifin any instanceE of M, pi_ is the i'th projection function:

Pig : Bp, x... x By, = By,

then the family of functiongi_ are represented in modgi(. This is because this family of
functions is reducible to the family of identify functiona &, and this family is represented
as previously remarked.



Definition An ER modelM is well-formulated iff

(i) for each entity types, there is no proper subskbf the set of identifying edges1
that is jointly monomorphic

(i) for all entity typesa and for all entity type$ with identifying outgoing edgek; 1<i<n
where for each, k; : b — by, for each family of edged; : a - b; such that(fq,... fn)
referenced with respect toks, ...kn), the path(fy,...fn,1p) is explicitly represented.
Note that from this condition it follows that for all entitygesa and for all entity types
b, for all identifying tuples(au,...qn) with respect tdy, where for each, g : b — b;,
for each family of edged; : a — b such that(fy,...f,) references with respect to
(da,-.-0n), the path(fy,...fn, (g, ..qq) ) IS EXPlicitly represented.

(iii) if for some n>1, a, bj 1<i<n, andc are entity types and i; 1<i<n, andy are simple paths
such that for each x; : a— b;, and such thag: a — c as shown here:

b1
o
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then if in each instanck there exists a unique functidi : Ey, x Ep, - Ec

such that domain ofg cimg(Ey, ., ) and for each, 1<i<n, Ey, o fe =Eyand
the family of functionsfe is irreducible then either in every instange Ey, «,) is
invertible or else the family of functionf are represented in the model by an entity
typed, and an identifying tuple of simple paths with respectit@;, ..., z such that
(x1,..Xn) referencesl with respect tayy, ...y and from which it follows (from note in
clause (ii)) that there is a simple pgtha — d such that in all instancds,

Eixgq) ©IMVE o) = Ep

Ep
v
Ex, . -
Eb2
/'EXZ. g
7
;’ Ex, fe
Ea < — By,
~
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3 Definitions Of Logical and Physical Entity Models

3.1 Preliminaries

Definition An equi-join condition between two entity typea andb is defined to be a se-
guence of pairs of attributes afrespectivelyb i.e it is for somen, n> 1 a sequence af
pairings of attributes of, respectivelyp, i.e. a functiono : N - M4 x Mﬁ.

If o is a equi-join condition between two entity typasandb then we will denote the i'th
pairing of attributes aej 1, g; 2. Thus we have that ; € M4 andaj 2 € Mp.

If o is a equi-join condition within a schensaand if E is an instance o then denote by
Es the many-valued function frork, to E, defined byo(e) = {€/ € E,: Vi e Ny, Gi1(€) =
ai2(€¢)}.

Definition An equi-join conditiono between two entity typea andb is defined to be an
inclusion dependency iff the setE, (e) is non-empty, for all instances E of s and foredl Es.

By thedomain of a join conditiong in an instancé& we shall mean the s¢ee E5|Vi,1<i <
N, 0 1(e)is defined.

Definition An include dependency between two entity types andb is referential* iff the
setEg(e) is a singleton set, for all instances E and fored the domain ofo .

3.2 Definition of Logical ER Model

Definition A well-formulated ER model ipurely-logical iff it also satisfies: (i) there are no
edges such that there is a simple paphwhich does not include in its definition and such
thatr ~ p and (ii) there are no non-trivial referential inclusion dapencies.

We say that an ER model idagical ER moddl iff it is purely logical.

3.3 Definition of Physical ER Model

Definition A physical ER model is a well formulated ER model that also satisfies: (i) all
identifying edges are attributes and (ii) for each relahipr there is navigational path
containing only attributes such that p.

4 First Cut Chen Transformation

The transformation described by Chen provides a first cuisfeamation from a logical
model to a physical model recursively.

4Also called a referential constraint or a foreign key caaist: Oracle Database Concepts Documentatlén:
any column of a composite foreign key is null, then the non-null portions of the key do not have to match any
corresponding portion of a parent key.



If M is a model then in the Chen transformed madig{M ) the attributes of an entity type
a are the attributes o in the modelM, plus additional 'physical’ attributes implementing
outgoing relationships :

Xo(M)7 = MU Xo(M)g"

where :

Xo(M)F" = Y Xo(M)iggny
re MR

In this definition, XO(M)dﬂ(r) denotes the subset of identifying attributes of the destina

tion of a relationship in the transformed model. These are the identifying attebwf the
original model plus the 'physical’ attributes which implentidentifying relationships.

Xo(M)F = ME U X (M)E™

where:
Xo(M)E" = 3 Xo(M)ga(r)
re/\/l'R

What these recursive definitions express is that the atésbott the physical model are those
of the logical model plus simple patkis,r1,...rn,a) wheren> 0, where foii > 1, r; is itself an
identifying relationship and whemis an identifying attribute. Such an attribu®, ...rn,a)

is an identifying iffrg is identifying.

The definition ofX5(M)A* can be reformulated in this way:

WMET= Y Y e X Mgy

n>0
rOEM I‘]_E./\/ldg( ) rmemM di(rn_l)

and the definition of the subsab (M) can similarly be reformulated:

Ho(M)& = 2 Z Z Mda(rn)

n>0 iR
roe My rleMdst(r ) rmeM ds(rn,l)

These reformulated definitions are the starting point ferdéfinitions that follow.

5 Chi Transform - a Revised Chen Transformation

To correct the Chen transformation we take note of equitglaths so as not to introduce
redundant attributes.

Say that a pathro,ry,...rn) € Xo(M)A* is subsumed by a simple path{so, sy, ...Sn) iff m>1
and either:

(i) (ro,rs,...rn) ~(s0,s1,..-Sm) and for some jj > 1, s; is not identifying.

or:

(i) (ro,r,-.-rn) < {(So,S1,..-Sm) andro # So.

We defineX; (M)A to be the subset 6to(M)4* consisting of those paths for which there
are no paths that subsume them.



We define the Chi transformed mod&{( M) by:
X (M)g = MguXp(M)g"

whereX> (M)A is the set of equivalence classes of path&iM )A* with respect to the:
equivalence relation.

and by: . .
X (M)E = MEUXp(M) AT
where:

Xo( M) = [Ce Xp(M)A*| there existdsy, s, ...sm) € C such that eithes, is identifying or
there existgro,r1,...rn) € Xo(M)$* and a simple pats}, ...s,, ) such that
ro is identifying and(ro,ry,...r,) is subsumed bysy, s}, ...5,)} (1)

6 Boyce-Codd Normal Form

One measure of the goodness of a physical model is whetletisfiss the well-formedness
condition know as Boyce Codd Normal Form. Written in the terohogy we are using here
it can be expressed as follows: a physical ER model is in B&ard Normal Form (BCNF)
iff for all entity typesa, for all attributes«y, ...x, andy, n> 1, if in all instance£, there exists
a unique n-ary partial functiof such thaE.y, . x> o f = Ey then eithely is x; for somei or
else in all instanceg, E.y, .. x,> is invertible.

The next lemma simplifies the requirement for showing BCNé&atesideration of irreducible
families of functions:

Lemma 6.1 A model M isin BCNF iff for all entity types a, for all attributes xz,...x, andy,
n>1,inall instances E, there existsa unigue n-ary partial function f suchthat Ecy, . x>0 f =
Ey and if the family of functions fg is irreducible then either n=1, x, =y and E¢ = idEy or
elseinall instances E, E«y, . x,> ISinvertible.

Proof SupposeM is an ER model and thatis an entity type ofM and thais, ...x, andy are
attributes ofa and suppose that in all instandeéf M there is a unique functiofi : v— v
such that

E(xl,...xn) ofg= Ey
Suppose thatg is reducible taye and thaige is irreducible. We have therefore that, for some
‘]1
fe=Pjoge
and therefore that
Ex

1, %) © Pjoge = Ey
and because
E(xl.,..ixn) oEproj; = E(xiy...xij)
it follows that
E(xil,...xij yoOe = Ey.
Sincege is irreducible it follows from the initial assumption thatheer j = 1 andx;, =y and
y is one of thex,,...x, as required or eIsE(Xil,_”X' y Is invertible from which it follows that

i
E(x,,..x,) IS invertible, as required.

5In fact this definition needs modifying to deal with cases wham sequence is subsumed by two distisct
sequences - otherwise too many identifying attribues arergésd.



We aim to show:

Theorem

If an ER modelM is well-formulated then the transformed modé{ M) is in Boyce-Codd
Normal Form.

Proof

Suppose thaky,...X,,y are attributes of the entity typa of model X (M) suppose that
in all instancesE of X(M) there exists a a unique n-ary partial functigp such that
E<x,,..x> © Ef = Ey we need to show that eithgris X for somei or else in all instances
E of X(M), Ex,,. x> is invertible.

From the definition of¥ it follows that for eachx; there is amy,my > 1 and a simple path
(Xi,1,---X,m ) in M wherex;  is identifying, forj > 1 anddest(x; m ) = v such that eithery = 1
andx; =x 1 orm > 1 andX = [(X 1,...X m}]. It follows likewise that for somen> 1, there is
a simple pathyi, ..ym) in M such that eithem= 1 andy =y, orm> 1 andy = [(y1,..Ym}]-

In the modelM therefore, for each 1<i <n, for somem, m > 1, we have a path of length
m; which we denote; = (X 1,...X;m ) and for somen, m> 1 we have a path of lengthwhich
we denotey = (y1,..ym) as shown here:

\
pd
Xl v
/. Xo | 7
./.
£ 7 &
a — — ey
~
~
AN
\

Each instanc& of M gives rise to an instanc& (E) of X'(M) and from the definition
of X(E) it follows that for every instanc& of M there is a unique functioBs such that
E<x,,..x> © Ef = Ey, as shown here:

E
e
EX1 . ’
EV
/'EXz, -
et f
-7 E E
Ea ;,_, AL E,
\'
E,
v g

From the assumption that the mod®l is well-formulated and from condition (iii) of the
definition of well-formulated, eithe,, ., is invertible in every instance of M in which
caseX (E)x,,. x, is invertible in every instancé of M and the proof is completed or else
the family of functionfg are represented in the model. From the definition of a function
family being represented it follows that either (i) yxsfor somei from which it follows
thaty is X; for somei and the proof is complete or (ii) there is an entity typm M and an

10



identifying family of simple pathsy,...qn, g : b— v and a patte: b — v such that in every
instancekE of M:
invE<q1,---qn) oE,=Te

from which it follows that in every instande of M:

Eixa,x) ©1VE, o ©E2=Epxy, sy 0 fE

(ag.--a

and thus, from our initial assumption, that:
VE einstpg, E(Xlﬁ---Xn) o invE(Qr»»-Qn) oE;= E(yl~,--Ym> (2)

In this case, becauset is well-formulated and from condition (ii) of the definitiaf well-
formulated it follows that there exists a pdihy,...px) :a— b, k> 0, such that:

VE € instM, <E)(17 Exn> o iﬂ\/E(qlqu) = E(plu--Pk) (3)

Eitherk=0 and(qy, ...Gn) = (X1,...-%n) in which caseE, _ ) is invertible in every instancé
of M and thus¥ (E)x, .. ,) is invertible in every instanc&'(E) of X' (M) and the proof is
complete or els& > 1 and it follows from (2) and (3) that:

VE einst, Eipyp0) °Eizr,2) = Biyn,oym) (4)

We will show that this leads to a contradiction and so conaplieé proof. Ifm> 1 it follows

from (4) thatpy,...pk, 21, ...z subsume(ys,..ym), which implies that(ys,..ym) is excluded
from X1 (M)A and thus thay = [(y1,..ym)] is not an attribute oft' (M) contrary to our
initial assumption.

Therefore we must conclude that= 1. In this case we hawg an attribute ofa in M and
from (4) we have in all instancds of M:

By =E(pr..p0 °E(zr...2) ®)
which is to say in all instancés of M:
Eyl = E(pla“'pk:zl:“zI) (6)

We have shown, therefore, thwat is an outgoing edge & in M which is equivalent to a
simple path ofM of length> 2 which contradicts the initial assumption that the matiéis
purely logical and so completes the proof.
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