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1 Introduction

According to the functional view of data, the content of a database instance can be described
as a collection of sets and functions in that (i) for each entity type a there is defined in the
database instance a setEa of entities of typea; (ii) for each, possibly optional, many-one

relationshipa
r
�− b there is defined a possibly partial functionfr ∶ Ea → Eb. In this view, an

instance of such a relationshipr is defined to be a pair of entitiese,e′ such thatfr(e) = e′.
Without loss of generality there can be assumed a single setV of all values that potentially
might be held in columns of tables, such as all possible texts, numerics, booleans and so on,
so that for each attributeattr of entity typeet there is defined in the database instance a func-
tion fattr ∶ Eet →V .

In relational data modelling, each row of data is uniquely distinguishable from the values of a
specific set of columns said to comprise the primary key to thedata whereas in logical entity
relationship (ER) modelling each entity is distinguishable from the values of a specific set of
attributes taken in combination with a specific set of relationships with other entities1.

From this starting position we provide a set of general definitions ofER schema, ER schema
instance, andER model so that from the definition ofER model we capture the notion of a
database schema and all its envisaged usages (to a meta-mathematician the ER schema notion
equates to atheory of some kind and an ER model to a theory and all its instances i.e. all
its models2). We define the conditions for an ER model to be purelylogical in the sense
used in the termlogical data design and, in contrast, the conditions for an ER model to be
physical. The definitions are such that aphysical ER model is pretty much the same thing
as a relational database schema. We define the first-cut Chen mapping for generating a first
cut physical ER model from a logical ER model and then developthis definition in a way
that reduces redundancy in the generated physical model by taking account of commuting
and near commuting diagrams of relationships in the logicalmodel and thereby establish

1Whichever methodology is followed the goal is to achieve for the database instances the logical principal of
identity of indiscernibles.

2This is my first and last usage of the termmodel with the meaning the term has in mathematical logic; for the
remainder of this paper it will have the meaning as used in data modelling.
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a revised Chen mappingX so that for any logical ER modelM, X (M) is a physical ER
model. Finally we define what it is for a logical model to be well-formulated and prove that
if M is a well-formulated logical ER model then the generated physical ER modelX (M) is
in Boyce-Codd normal form (BCNF).

2 Definition of ER model

The functional view of data summarised above taken with the requirement of specifying the
attributes and relationships from which entitites may be identified suggests a mathematical
definition of an ER-schema as follows:

Definition An ER-schema is a directed graph having the following additional structure:

(i) a distinguished nodev for which there are no outgoing edges and which represents the
type of all scalar values

(ii) a distinguished subset of edges representing identifying edges.

If M is an ER-schema (or an ER-model which, as we define below, includes an ER-schema)
then the nodes ofM other thanv we say are entity types and we denote byME

a , the set of
edges leaving entity typea.

The setMA
a of attributes of an entity typea is defined as the set of edges that havea as source

andv as destination. The setMR
a of outgoing relationships of an entity typea is defined as

the set of edges havinga as source and having destinations other thanv. Therefore for all
entity typesa:

ME
a =M

A
a ∪M

R
a

That subset of outgoing relationships ofa that are also in the distinguished set of identifying
edges is said be the set of identifying relationships ofa and is denotedMiR

a .

That subset of those attributes ofa that are also in the distinguished set of identifying edges
is said to be the set of identifying attributes ofa and is denotedMiA

a .

The set of all outgoing identifying edges from a nodea will be denotedκa.

So that we can define the characteristics ofκa as a set of identifying properties for entitites of
typea we need the following definition:

Definition If s is a set and iffi,1≤i≤n is a family of partial functions,fi ∶ s → si for some
setssi,1≤i≤n, then we will say that the family of functionsfi,1≤i≤n, is jointly invertible if
the partial function⟨ f1, ... fn⟩ ∶ s → s1× ...× sn is invertible i.e. iff there is a partial func-
tion inv⟨ f1,... fn⟩ ∶ s1× ...× sn → s such that (i) for allx ∈ s, inv⟨ f1,... fn⟩(⟨ f1(x), ... f2(x)⟩) = x and
(ii) if y ∈ s1× ...× sn andy ∉ img(⟨ f1, ... fn⟩) theninv⟨ f1,... fn⟩(y) is undefined.

which we then use to define the notion of a database instance asfollows:

Definition A database instance of an ER schema is a set of entitiesEa for each nodea of the
graph of the schema and a partial functionEr ∶ Ea → Eb for each edge of the graphr ∶ a→ b
such that for each entity typea the family of functionsEr,r∈MiE

a
, is jointly invertible.
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It follows that in every database instanceE, for every entity typea there is a functioninvEκa

that represents navigation to an entity from an identifyingset of related entities or attributes.
In a physical model this will equate to keyed lookup.

Without change to the underlying concept then we can say thateach ER schema comes
equipped with a multi-edgeIa for every entity type a such that if the outgoing identifying
edges ofa areki ∶ a→ ai, for 1≤ i ≤ n then the multi-edge has source nodes⟨a1, ...an⟩ and
destination nodea.
A simple navigation path over an ER model is a sequence ofn edges:

r1
et0�−et1

r2
�− et2...

rn
�−

etn. et0 is said to be the source of the path andetn is said to be the destination of the path.
We extend this definition to take account of navigation alongthe multi-edges. To do so we
define the set of navigation paths recursively:

(i) Each edgef ∶ a→ b is a navigation path.

(ii) The empty sequence⟨⟩ ∶ a→ a is a navigation path for every entity typea.

(iii) ⟨p, f ⟩ ∶ a→ c is a navigation path ifp is a navigation pathp ∶ a→ b and f is an edge
p ∶ b→ c

(iv) ⟨p1, ...pn,Ib⟩ ∶ a→ b is a navigation path for all entity typesb such thatIb ∶ ⟨b1, ...bn⟩
and where for eachi, 1≤ i ≤ n, pi is a path,pi ∶ a→ bi.

For any database instanceE we can extend the definition ofE f , for edgesf , so that to every
path p, p ∶ a→ b, we have defined a functionEp ∶ Ea → Eb. From the initial definition ofE f

that applies to edges the definition proceeds recursively asfollows:

(i) For each entity typea, E⟨⟩ ∶ Ea→ Ea is defined to be the identity function.

(ii) if p is a navigation pathp ∶ a→ b and f is an edgep ∶ b→ c thenE⟨p, f ⟩ is is defined to
be the functional compositionEp ○E f .

(iii) for all entity typesb such thatIb ∶ ⟨b1, ...bn⟩→ b and where for eachi, 1≤ i ≤ n, pi is a
path,pi ∶ a→ bi, E⟨p1,...pn,Ib⟩ is defined to be⟨Ep1, ...Epn⟩○ invEκb

.

If r ands are paths both having sourcea and destinationb then we will sayr ≤ s iff in all
instances E, for all entitiese ∈ Ea, if Er(e) is defined thenEs(e) is defined andEr(e) = Es(e).

If r ands are paths both having sourcea and destinationb then we will sayr ≃ s iff r ≤ s and
s ≤ r.

With these definitions, the (meta-relationship)≤ is a partial order on the classes of equivalent
paths.

For pathsr ands we definer < s to be equivalent tor ≤ s and notr ≃ s.

Definition An ER model is an ER schema and a set of database instances of the schema.

If p is a path within an ER modelM then say that the path isexplicitly represented wrt the
model iff it is equivalent to a simple path.

We generalise the relational data model concept of a candidate key as follows:
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Definition A family of pathspi ∶ a→ ai within a modelM is said to bejointly monomorphic
iff in all instances E, the family of functionsEpi,1≤i≤n is jointly invertible.

Consider that the various database normal forms (3NF, BCNF,4NF, 5NF and the like) each
prescribe that a database schema be complete in some way as a description of the facts of
its instances3 and observe in particular that BCNF can be paraphrased as saying that those
relationships (i.e. functional dependencies) that exist in the data ought to berepresented in
the schema. These considerations motivate the definitions which now follow and conclude
with the definition of awell-formulated entity model. This definition generalises that of a
relational schema being in Boyce-Codd Normal Form (BCNF).
Notation If X1, ...Xn are sets and ifJ = {i1, ...i j} ⊆ {1, ...n} then denote byPJ the projection
function :

PJ ∶ X1×X2× ...Xn→ Xi1 ×Xi2 × ...Xi j

i.e. the function given by:
PJ(⟨x1, ...xn⟩) = ⟨xi1, ...xi j⟩.

Definition If M is an entity model, ifb1, ...bn andc are entity types of modelM and if fE

is a family of functions such that in every instanceE ofM:

fE ∶ Eb1 × ...×Ebn → Ec

then

• the family of functionsfE is said to bereducible to a family of functions:

gE ∶ Ebi1
× ...×Ebi j

→ Ec

for someJ = {i1, ...i j} ⊆ {1, ...n}, iff in all instances E:

fE = PJ ○gE

• the family of functionsfE is said to beirreducible iff there is no proper subsetJ =
{i1, ...i j} ⊂ {1, ...n}, and no family of functionsgE ∶ Ebi1

, ...Ebi j
→ Ec such thatfE is

reducible togE .

Definition A tuple of simple paths⟨p1, ...pn⟩ is said to be anidentifying tuple with respect
to an entity type a iff it is in the set of tuples defined recursively as follows:

(i) the empty tuple⟨⟩ is an identifying tuple with respect toa,

(ii) if ki, 1≤ i ≤ n is the set of all identifying outgoing edges ofa then⟨⟨k1⟩, ...⟨kn⟩⟩ is an
identifying tuple with respect toa,

(iii) if ⟨p1, ...pn⟩ is an identifying tuple with respect toa and if for somei, 1≤ i ≤ n, the
destination ofpi is b and ifk j, 1≤ j ≤m is the set of all identifying outgoing edges ofb
then⟨p1, ...pi−1,⟨pi,k1⟩...⟨pi,km⟩, pi+1, ...pn⟩ is an identifying tuple with respect toa.

Definition If M is an entity model, ifa andb are entity types ofM and if ⟨q1, ...qn⟩ is an
identifying tuple with respect tob where for eachi, qi ∶ b→ bi, if fi ∶ a→ bi, for eachi, 1≤ i ≤ n,
is a tuple of edges ofM then say that⟨ f1, ... fn⟩ references b with respect to ⟨q1, ...qn⟩ iff in
all instancesE ofM, img(E⟨ f1,... fn⟩) ⊆ img(E⟨q1,...qn⟩).

3Essentially because being good as a schema is to be a good theory and a good theory is one that is a good fit to
the facts.

4



Definition If M is an entity model and ifb1, ...bn andc are entity types withinM and if fE

is a family of functions such that for each instanceE ofM, fE ∶ Eb1 × ...×Ebn → Ec, then the
family of functions fE is represented in the ER model iff either

(i) the family fE is irreducible and there exists an entity typed and an identifying tuple of
simple paths with respect tod, ⟨q1, ...qn⟩, such that for eachqi ∶ d → bi and a a simple
pathz = ⟨z1, ...zl⟩ such thatz ∶ d→ c, for somel ≥ 0 as here:

b1

b2

⋮
bn d

c

b

b

b q1

b

b

b q2

bbb

qn

b

b

b z

wherez1 not identifying and such that in all instancesE, invE⟨q1,...qn⟩
○E⟨z1,...zl⟩

= fE

Eb1

Eb2

⋮

Ebn

Ed

Ec

fE

invE⟨q1,...qn⟩

E⟨z1,...zn⟩

or

(ii) the family fE is reducible to an irreducible familygE and the familygE is represented
in the model.

Remark For any entity modelM and for any typeb ofM the family of identity functions
on entities of typeb :

idEb ∶ Eb→ Eb

is represented because we can choose bothq ∶ b→ b and andz ∶ b→ b to be the empty path⟨⟩;
then we have:

invE⟨q1,...qn⟩
○E⟨z1,...zl⟩

= invE⟨⟩ ○E⟨⟩

= id−1
Eb
○ idEb

= idEb

as required.

Remark For any entity modelM, for anyn ≥ 1, for any tuple of typesb1, ...bn and for anyi,
1≤ i ≤ n, if in any instanceE ofM, piE

is the i’th projection function:

piE
∶ Eb1 × ...×Ebn → Ebi

then the family of functionspiE
are represented in modelM. This is because this family of

functions is reducible to the family of identify functions on Ebi and this family is represented
as previously remarked.
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Definition An ER modelM is well-formulated iff

(i) for each entity typea, there is no proper subsetI of the set of identifying edgesMiE
a

that is jointly monomorphic

(ii) for all entity typesa and for all entity typesb with identifying outgoing edgeski,1≤i≤n

where for eachi, ki ∶ b→ bi, for each family of edgesfi ∶ a→ bi such that⟨ f1, ... fn⟩
referencesb with respect to⟨k1, ...kn⟩, the path⟨ f1, ... fn,Ib⟩ is explicitly represented.
Note that from this condition it follows that for all entity typesa and for all entity types
b, for all identifying tuples⟨q1, ...qn⟩ with respect tob, where for eachi, qi ∶ b→ bi,
for each family of edgesfi ∶ a → bi such that⟨ f1, ... fn⟩ referencesb with respect to
⟨q1, ...qn⟩, the path⟨ f1, ... fn,I⟨q1,...qn⟩⟩ is explicitly represented.

(iii) if for some n ≥ 1, a, bi,1≤i≤n, andc are entity types and ifxi,1≤i≤n, andy are simple paths
such that for eachi, xi ∶ a→ bi, and such thaty ∶ a→ c as shown here:

b1

b2

⋮

a bn

c

b

b

b

x1

b

b

bx2

b b b

xn

b

b

by

then if in each instanceE there exists a unique functionfE ∶ Eb1 ×Ebn → Ec

such that domain offE ⊆ img(E⟨x1,...xn⟩) and for eachi, 1≤ i ≤ n, E⟨x1,..xn⟩ ○ fE = Ey and
the family of functionsfE is irreducible then either in every instanceE, E⟨x1,..xn⟩ is
invertible or else the family of functionsfE are represented in the model by an entity
typed, and an identifying tuple of simple paths with respect tod, q1, ...qn, z such that
⟨x1, ..xn⟩ referencesd with respect toq1, ...qn and from which it follows (from note in
clause (ii)) that there is a simple pathp ∶ a→ d such that in all instancesE,

E⟨x1,..xn⟩ ○ invE⟨q1,...qn⟩
= Ep

Eb1

Eb2

⋮

Ea Ebn

Ec

b

b

bEx1

b

b

bEx2

b b b

Exn

b

b

bEy

fE
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3 Definitions Of Logical and Physical Entity Models

3.1 Preliminaries

Definition An equi-join condition between two entity typesa andb is defined to be a se-
quence of pairs of attributes ofa respectivelyb i.e it is for somen, n ≥ 1 a sequence ofn
pairings of attributes ofa, respectively,b, i.e. a functionσ ∶Nn→MA

a ×M
A
b .

If σ is a equi-join condition between two entity typesa andb then we will denote the i’th
pairing of attributes asσi,1,σi,2. Thus we have thatσi,1 ∈MA

a andσi,2 ∈MA
b .

If σ is a equi-join condition within a schemas and if E is an instance ofs then denote by
Eσ the many-valued function fromEa to Eb defined byσ(e) = {e′ ∈ Eb ∶ ∀i ∈ Nn,σi,1(e) =
σi,2(e′)}.

Definition An equi-join conditionσ between two entity typesa andb is defined to be an
inclusion dependency iff the setEσ(e) is non-empty, for all instances E of s and for alle ∈Ea.

By thedomain of a join conditionσ in an instanceE we shall mean the set{e ∈ Ea∥∀i,1≤ i ≤
n,σi,1(e)is defined}.

Definition An include dependencyσ between two entity typesa andb is referential4 iff the
setEσ(e) is a singleton set, for all instances E and for alle in the domain ofσ .

3.2 Definition of Logical ER Model

Definition A well-formulated ER model ispurely-logical iff it also satisfies: (i) there are no
edgesr such that there is a simple pathp which does not includer in its definition and such
thatr ≃ p and (ii) there are no non-trivial referential inclusion dependencies.

We say that an ER model is alogical ER model iff it is purely logical.

3.3 Definition of Physical ER Model

Definition A physical ER model is a well formulated ER model that also satisfies: (i) all
identifying edges are attributes and (ii) for each relationship r there is navigational pathp
containing only attributes such thatr ≃ p.

4 First Cut Chen Transformation

The transformation described by Chen provides a first cut transformation from a logical
model to a physical model recursively.

4Also called a referential constraint or a foreign key constraint. Oracle Database Concepts Documentation:If
any column of a composite foreign key is null, then the non-null portions of the key do not have to match any
corresponding portion of a parent key.
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If M is a model then in the Chen transformed modelX0(M) the attributes of an entity type
a are the attributes ofa in the modelM, plus additional ’physical’ attributes implementing
outgoing relationships :

X0(M)Aa =M
A
a ∪X0(M)A+a

where :
X0(M)A+a = ∑

r∈MR
a

X0(M)iAdst(r)

In this definition,X0(M)iAdst(r) denotes the subset of identifying attributes of the destina-
tion of a relationshipr in the transformed model. These are the identifying attributes of the
original model plus the ’physical’ attributes which implementidentifying relationships.

X0(M)iAa =MiA
a ∪X0(M)iA+a

where:
X0(M)iA+a = ∑

r∈MiR
a

X0(M)iAdst(r)

What these recursive definitions express is that the attributes of the physical model are those
of the logical model plus simple paths⟨r0,r1, ...rn,a⟩wheren≥0, where fori≥1, ri is itself an
identifying relationship and wherea is an identifying attribute. Such an attribute⟨r0, ...rn,a⟩
is an identifying iffr0 is identifying.

The definition ofX0(M)A+a can be reformulated in this way:

X0(M)A+a =∑
n≥0

∑
r0∈MR

a

∑
r1∈M

iR
dst(r0)

... ∑
rn∈MiR

dst(rn−1)

MiA
dst(rn)

and the definition of the subsetX0(M)iA+a can similarly be reformulated:

X0(M)iA+a =∑
n≥0

∑
r0∈M

iR
a

∑
r1∈M

iR
dst(r0)

... ∑
rn∈MiR

dst(rn−1)

MiA
dst(rn)

These reformulated definitions are the starting point for the definitions that follow.

5 Chi Transform - a Revised Chen Transformation

To correct the Chen transformation we take note of equivalent paths so as not to introduce
redundant attributes.

Say that a path⟨r0,r1, ...rn⟩ ∈X0(M)A+a is subsumed by a simple path⟨s0,s1, ...sm⟩ iff m ≥ 1
and either:

(i) ⟨r0,r1, ...rn⟩ ≃ ⟨s0,s1, ...sm⟩ and for some j,j > 1, s j is not identifying.

or:

(ii) ⟨r0,r1, ...rn⟩ < ⟨s0,s1, ...sm⟩ andr0 ≠ s0.

We defineX1(M)A+a to be the subset ofX0(M)A+a consisting of those paths for which there
are no paths that subsume them.
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We define the Chi transformed modelX (M) by:

X (M)Aa =M
A
a ∪X2(M)A+a

whereX2(M)A+a is the set of equivalence classes of paths inX1(M)A+a with respect to the≃
equivalence relation.

and by:
X (M)iAa =MA

a ∪X2(M)iA+a

where5:

X2(M)iA+a ={C ∈X2(M)A+a ∣ there exists⟨s0,s1, ...sm⟩ ∈C such that eithers0 is identifying or

there exists⟨r0,r1, ...rn⟩ ∈X0(M)iA+a and a simple path⟨s′1, ...s
′
m′⟩ such that

r0 is identifying and⟨r0,r1, ...rn⟩ is subsumed by⟨s0,s
′
1, ...s

′
m⟩} (1)

6 Boyce-Codd Normal Form

One measure of the goodness of a physical model is whether it satisfies the well-formedness
condition know as Boyce Codd Normal Form. Written in the terminology we are using here
it can be expressed as follows: a physical ER model is in BoyceCodd Normal Form (BCNF)
iff for all entity typesa, for all attributesx1, ...xn andy, n ≥ 1, if in all instancesE, there exists
a unique n-ary partial functionf such thatE<x1,...xn> ○ f = Ey then eithery is xi for somei or
else in all instancesE, E<x1,...xn> is invertible.

The next lemma simplifies the requirement for showing BCNF toconsideration of irreducible
families of functions:

Lemma 6.1 A modelM is in BCNF iff for all entity types a, for all attributes x1, ...xn and y,
n≥1, in all instances E, there exists a unique n-ary partial function f such that E<x1,...xn>○ f =
Ey and if the family of functions fE is irreducible then either n = 1, x1 = y and E f = idEy or
else in all instances E, E<x1,...xn> is invertible.

Proof SupposeM is an ER model and thata is an entity type ofM and thatx1, ...xn andy are
attributes ofa and suppose that in all instancesE ofM there is a unique functionfE ∶ v→ v
such that

E⟨x1,...xn⟩ ○ fE = Ey

Suppose thatfE is reducible togE and thatgE is irreducible. We have therefore that, for some
J,

fE = PJ ○gE

and therefore that
E⟨x1,...xn⟩ ○PJ ○gE = Ey

and because
E⟨x1,...xn⟩ ○Epro jJ = E⟨xi1

,...xi j ⟩

it follows that
E⟨xi1

,...xi j ⟩
○gE = Ey.

SincegE is irreducible it follows from the initial assumption that either j = 1 andxi1 = y and
y is one of thex1, ...xn as required or elseE⟨xi1

,...xi j ⟩
is invertible from which it follows that

E⟨x1,...xn⟩ is invertible, as required.

5In fact this definition needs modifying to deal with cases whenan r sequence is subsumed by two distincts
sequences - otherwise too many identifying attribues are generated.
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We aim to show:
Theorem
If an ER modelM is well-formulated then the transformed modelX (M) is in Boyce-Codd
Normal Form.

Proof
Suppose thatx1, ...xn,y are attributes of the entity typea of modelX (M) suppose that
in all instancesE of X (M) there exists a a unique n-ary partial functionE f such that
E<x1,...xn> ○E f = Ey we need to show that eithery is xi for somei or else in all instances
E of X (M), E<x1,...xn> is invertible.

From the definition ofX it follows that for eachxi there is ami,mi ≥ 1 and a simple path
⟨xi,1, ...xi,mi⟩ inMwherexi, j is identifying, for j >1 anddest(xi,mi) = v such that either,mi =1
andxi = xi,1 or mi > 1 andxi = [⟨xi,1, ...xi,mi⟩]. It follows likewise that for somem ≥ 1, there is
a simple path⟨y1, ..ym⟩ inM such that eitherm = 1 andy = ym or m > 1 andy = [⟨y1, ..ym⟩].

In the modelM therefore, for eachi, 1≤ i ≤ n, for somemi, mi ≥ 1, we have a path of length
mi which we denotexi = ⟨xi,1, ...xi,mi⟩ and for somem, m ≥ 1 we have a path of lengthm which
we denotey = ⟨y1, ..ym⟩ as shown here:

v

v

⋮

a v

v

b

b

b

x1

b

b

bx2

b b b

xn

b

b

by

Each instanceE of M gives rise to an instanceX (E) of X (M) and from the definition
of X (E) it follows that for every instanceE ofM there is a unique functionE f such that
E<x1,...xn> ○E f = Ey, as shown here:

Ev

Ev

⋮

Ea Ev

Ev

b

b

bEx1

b

b

bEx2

b b b

Exn

b

b

bEy

fE

From the assumption that the modelM is well-formulated and from condition (iii) of the
definition of well-formulated, eitherE⟨x1,...xn⟩ is invertible in every instanceE ofM in which
caseX (E)⟨x1,...xn⟩ is invertible in every instanceE ofM and the proof is completed or else
the family of functionfE are represented in the modelM. From the definition of a function
family being represented it follows that either (i) y isxi for somei from which it follows
thaty is xi for somei and the proof is complete or (ii) there is an entity typeb inM and an
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identifying family of simple pathsq1, ...qn, qi ∶ b→ v and a pathz ∶ b→ v such that in every
instanceE ofM:

invE⟨q1,...qn⟩
○Ez = fE

from which it follows that in every instanceE ofM:

E⟨x1,...xn⟩ ○ invE⟨q1,...qn⟩
○Ez = E⟨x1,...xn⟩ ○ fE

and thus, from our initial assumption, that:

∀E ∈ instM, E⟨x1,...xn⟩ ○ invE⟨q1,...qn⟩
○Ez = E⟨y1,..ym⟩ (2)

In this case, becauseM is well-formulated and from condition (ii) of the definitionof well-
formulated it follows that there exists a path⟨p1, ...pk⟩ ∶ a→ b, k ≥ 0, such that:

∀E ∈ instM, ⟨Ex1, ...Exn⟩○ invE⟨q1,...qn⟩
= E⟨p1,...pk⟩

(3)

Eitherk = 0 and⟨q1, ...qn⟩ = ⟨x1, ...xn⟩ in which caseE⟨x1,...xn⟩ is invertible in every instanceE
ofM and thusX (E)⟨x1,...xn⟩ is invertible in every instanceX (E) of X (M) and the proof is
complete or elsek ≥ 1 and it follows from (2) and (3) that:

∀E ∈ instM, E⟨p1,...pk⟩
○E⟨z1,...zl⟩

= E⟨y1,..ym⟩ (4)

We will show that this leads to a contradiction and so complete the proof. Ifm > 1 it follows
from (4) that p2, ...pk,z1, ...zl subsume⟨y1, ..ym⟩, which implies that⟨y1, ..ym⟩ is excluded
from X1(M)A+a and thus thaty = [⟨y1, ..ym⟩] is not an attribute ofX (M) contrary to our
initial assumption.

Therefore we must conclude thatm = 1. In this case we havey1 an attribute ofa inM and
from (4) we have in all instancesE ofM:

Ey1 = E⟨p1,...pk⟩
○E⟨z1,...zl⟩

(5)

which is to say in all instancesE ofM:

Ey1 = E⟨p1,...pk,z1,...zl⟩
(6)

We have shown, therefore, thaty1 is an outgoing edge ofa in M which is equivalent to a
simple path ofM of length≥ 2 which contradicts the initial assumption that the modelM is
purely logical and so completes the proof.
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